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Relative entropy: Free energy associated with equilibrium fluctuations
and nonequilibrium deviations
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Using a one-dimensional macromolecule in aqueous solution as an illustration, we demonstrate that the
relative entropy from information theory,(kpk ln(pk /pk* ), has a natural role in the energetics of equilibrium and
nonequilibrium conformational fluctuations of the single molecule. It is identified as the free energy difference
associated with a fluctuating density in equilibrium, and is associated with the distribution deviate from the
equilibrium in nonequilibrium relaxation. This result can be generalized to any other isothermal macromolecu-
lar system using the mathematical theories of large deviations and Markov processes, and at the same time
provides the well-known mathematical results with interesting physical interpretations.
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I. INTRODUCTION

Entropy is the most important concept in both statisti
mechanics and information theory. In the latter@1#, entropy
is a quantity associated with any discrete probability dis
bution $pk% @2#,

S@$pk%#52(
k

pk ln pk , ~1!

and its generalization to continuous probability distributio
is straightforward. In statistical mechanics, the same Eq.~1!
gives the entropy, in units ofkB , for a canonical ensemble o
a molecular system at constant temperature. This is know
Gibbs entropy. The probability of a molecular configuratio
say $xk%, is related to its free energyF($xk%) according to
Boltzmann’s lawP($xk%)}e2F($xk%)/kBT, wherekB is Boltz-
mann’s constant andT is the temperature in K@3#. It is
generally accepted, however, that the entropy in informa
theory and that in statistical mechanics, though they sh
the same name, are not the same.

This paper demonstrates a second connection betwee
two fields: both are based on the theory of probability. Th
is another important concept in information theory call
relative entropyH@$pk%u$pk* %#. It is associated with prob
ability distributions$pk% and$pk* %:

H@$pk%u$pk* %#5(
k

pk lnS pk

pk*
D . ~2!

The relative entropy has many important mathematical pr
erties; for example, it is positive, and is equal to zero if a
only if pk5pk* ; furthermore, it is a convex function ofpk .

Until now, however, the relative entropy has not natura
found a physical interpretation in statistical mechanics,
spite its important role as a mathematical device in the
bility analysis of master equations@4# and Fokker-Planck
equations@5#. In this paper, we demonstrate, using two sp
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cific examples, that the relative entropy is in fact the fr
energy associated with isothermal equilibrium fluctuatio
and a generalized free energy associated with transient
equilibrium deviations. The two examples we use are from
recently developed stochastic theory of macromolecular
chanics @6#; however, the generalization of our result
straightforward, and in fact is known in the mathematic
literature@5,7#.

The statistical mechanical system we discuss is a sin
macromolecule in aqueous solution at a constant tempera
T. The interest in such a system is motivated by recent
perimental studies on single biological molecules@8,6#. We
point out that such systems provide a unique type of n
equilibrium problem in which the momentum distribution
in rapid equilibrium due to collisions with the solvent mo
ecules. Hence the nonequilibrium problem is only for t
conformational, stochastic dynamics of the macromolec
A separation of the time scales for momentum and con
mation ~overdamped mechanics! is assumed, which leads t
the Smoluchowski equation.

The Smoluchowski approach to nonequilibrium statisti
mechanics of single macromolecules in an aqueous solu
is parallel and complementary to the approach based on
Boltzmann equation for gases and liquids. Both approac
are based on Newtonian mechanics, but both invoke a
chastic elementa priori in dealing with collisions@10#.
There is an extensive literature on the nonequilibrium sta
tical mechanics, including studies on relative entropy, ba
on Boltzmann’s framework@9#. This work illustrates an ap-
proach based on the Smoluchowski’s framework@6#, which
is simpler, conceptually straightforward, and applicable
biomolecular applications. We note that the rate of unco
pensated heat in Ref.@9# seems to correspond to the entro
production rate in the Smoluchowski’s framework. The p
cise and concrete relation between these two quantities
mains to be established@11#.

II. EQUILIBRIUM FLUCTUATIONS OF A POLYMER
CHAIN

Let us consider a one-dimensional polymer chain withN
identical subunits. Each subunit is an elastic element wit
free energy function~potential of mean force! f(x). Let
x1 ,x2 , . . . ,xN21 be the junctions between successive su
©2001 The American Physical Society03-1
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units. We assume that the endx050 is anchored and the endxN is freely fluctuating. This model was motivated by mechani
studies on giant muscle protein titin@12#. According to Boltzmann’s law, the joint probability for all$xk% is

Peq~$xk%!5Z21 expF2
f~x12x0!1f~x22x1!1•••1f~xN2xN21!

kBT G , ~3!
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Z5S E
0

`

expF2
f~z!

kBT GdzD N

.

The partition function of the equilibrium state of such a sy
tem can be obtained analytically using Laplace transfo
@13,14#. The theory of large deviation of level 1 serves as
rigorous mathematical foundation@7#.

In a laboratory, usually onlyxN is observable@15#. For
this case, we obtain the marginal distribution of Eq.~3!:

Peq~xN!5E
0

`

•••E
0

`

Peq~$xi%!dx1 . . . dxN21 . ~4!

Combining the probability distribution in Eq.~4! with Bolt-
zmann’s law, we obtain a free energy function for the en
polymer under the condition that the end of the chain is
xN :

F~xN!52kBT ln Peq~xN!.

In a completely parallel fashion, one can obtain the free
ergy functionF(xi ,xj ) from a marginal distribution of Eq
~3!.

A different type of laboratory measurements is to obt
the density for the subunit length. Optical spectroscopy
sensitive to the length of subunits; hence it provides a m
surement of the density function,

n~x!5
1

N (
k51

N

d~x2xk1xk21!, ~5!

which is known as the empirical measure in the theory
large deviation of level 2@7#.

Clearly, the functionn(x) fluctuates in an equilibrium
state, since (xk2xk21) fluctuates. It has an expectation

E@n~x!#5p~x!5
e2f(x)/kBT

E
0

`

e2f(x)/kBTdx

.

For large N, the fluctuations ofn(x) around p(x) are so
small that one seldom considers their existence. Never
less, there is a free energy associated with eachn(x), and we
now show that

F@n~x!#2F@p~x!#5NkBTE
0

`

n~x!lnS n~x!

p~x! Ddx. ~6!
04210
-

s

e
t

-

is
a-

f

e-

This is in fact a mathematical result for a large deviation
level 2 @7#. We give only a heuristic proof below, and leav
the rigorous treatment to the mathematical literature.

Let us denote

nn5E
nd

(n11)d
n~x!dx and pn5E

nd

(n11)d
p~x!dx.

Because all the subunits are independent,nn is a multinomial
distribution:

P~n1 ,n2 , . . . ,nm!5
N!

~Nn1!! ~Nn2!! . . . ~Nnm!!

3p1
Nn1p1

Nn2 . . . p1
Nnm. ~7!

According to Boltzmann’s law, the free energy differen
between configurations$nn% and$pn% is

F@$nn%#2F@$pn%#52kBT lnS P~$nn%!

P~$pn%! D
'NkBT(

n51

m

nn lnS nn

pn
D

→NkBTE
0

`

n~x!lnS n~x!

p~x! Ddx ~d→0!.

Therefore, the relative entropy in Eq.~6! is the free en-
ergy difference between the distribution$n(x)% and its~equi-
librium! expectation$p(x)%. The relative entropy is the free
energy associated with a fluctuating density at equilibri
@16#.

III. NONEQUILIBRIUM RELAXATION OF A POLYMER
CHAIN

Our second example extends the concept of free ene
beyond an equilibrium state, and reveals its central role
the transient, isothermal, relaxation processes to equili
@17#. The dynamic model for the polymer chain in an aqu
ous solution at constant temperatureT is a Smoluchowski
equation@6#,

]P~x,t !

]t
5

kBT

h
“

2P1
1

h
“•@“U~x!P#, ~8!

whereh is a frictional coefficient,x5(x1 ,x2 , . . . ,xN), “

5(]/]x1 ,]/]x2 , . . . ,]/]xN), and
3-2
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U~x!5f~x12x0!1f~x22x1!1•••1f~xN2xN21!.
~9!

It is easy to verify that Boltzmann’s distributionPeq(x) in
Eq. ~3! is the stationary solution to Eq.~8!. In fact, the
steady-state solution of Eq.~8! defines a stationary, time
reversible, stochastic process with equilibrium fluctuatio
@18#.

How is an arbitrary distributionP(x)ÞPeq(x) changing
with time and approaching toPeq(x)? We now show that a
free energy functional can be introduced, and it is in fact
relative entropy. Let us define aC function

C@P~x!#5E @U~x!P~x!1kBTP~x!ln P~x!#dx

52kBT ln Z1kBTE P~x!lnS P~x!

Peq~x! Ddx.

~10!

The first term is the Helmholtz free energy of the ent
polymer chain in its equilibrium state, and the second te
should be interpreted as the free energy difference betw
the arbitrary distributionP(x) and the equilibrium distribu-
tion Peq(x).

The mathematical properties of relative entropy imme
ately lead to the following statement: The system reac
equilibrium if and only if the free energy functional~the C
function! is minimized. Furthermore, ifP(x,t) changes with
t in a transient process according to Eq.~8!, then

Ċ@P~x,t !#52E J~x,t !F~x,t !dx<0, ~11!

where

J~x,t !52
kBT

h
“P~x,t !2

1

h
“U~x!P~x,t !

and
f
,
-
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F~x,t !52kBT“ ln P~x,t !2“U~x!

are fluxes and forces, which are both zero at equilibri
@19#. Furthermore,J5PFh, and Eq.~11! is related to the
entropy production rate@6,18,19#. Equation~11! immediately
leads to a second statement: The dynamic ofP(x,t) follows
a path of decreasing free energy. The free energy functio
in Eq. ~10! is a Lyapunov function@5# for the stochastic
dynamics of the polymer. The relative entropy is the fr
energy difference between an arbitrary distribution and
equilibrium distribution. It is associated with the nonequili
rium deviation from the equilibrium state. However, it
interesting to note that the dynamics does not follow
steepest descent of the free energy functional. The inter
tation and significance of this observation are not clear to
at present time. We also note that Eq.~11! corresponds to the
H theorem in Boltzmann’s framework.

It is of course not a coincidence that the relative entro
appears as a free energy difference in both equilibrium
nonequilibrium situations. Onsager@20# pointed out that the
force driving the nonequilibrium relaxations is in fact th
same force causing the equilibrium fluctuations to return
its mean. Our result, therefore, firmly relates the force to
free energy difference in terms of the relative entropy.

In summary, we have shown that the relative entropy
information theory has a natural physical meaning in eq
librium and nonequilibrium statistical mechanics. It is in fa
the free energy difference associated with the equilibri
fluctuations of a density function, a result known in th
theory of large deviations. In nonequilibrium systems, it
the free energy difference between an arbitrary distribut
and the equilibrium distribution. Again the latter result
known in the theory of Markov processes. What is intere
ing in the present paper is the identification of the relat
entropy with Helmholtz’s free energy for isothermal sy
tems. Conversely, the mathematical theorems mentio
above become an integral part of the statistical physics
macromolecules.
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