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Relative entropy: Free energy associated with equilibrium fluctuations
and nonequilibrium deviations
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Using a one-dimensional macromolecule in aqueous solution as an illustration, we demonstrate that the
relative entropy from information theor, p, In(p./pi ), has a natural role in the energetics of equilibrium and
nonequilibrium conformational fluctuations of the single molecule. It is identified as the free energy difference
associated with a fluctuating density in equilibrium, and is associated with the distribution deviate from the
equilibrium in nonequilibrium relaxation. This result can be generalized to any other isothermal macromolecu-
lar system using the mathematical theories of large deviations and Markov processes, and at the same time
provides the well-known mathematical results with interesting physical interpretations.
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[. INTRODUCTION cific examples, that the relative entropy is in fact the free
energy associated with isothermal equilibrium fluctuations

Entropy is the most important concept in both statisticaland a generalized free energy associated with transient non-
mechanics and information theory. In the lattét, entropy  €quilibrium deviations. The two examples we use are from a

is a quantity associated with any discrete probability distri-recently developed stochastic theory of macromolecular me-
bution{p} [2] chanics[6]; however, the generalization of our result is

straightforward, and in fact is known in the mathematical
literature[5,7].
S{pl=—2> pelnp, ) The statistical mechanical system we discuss is a single
K macromolecule in aqueous solution at a constant temperature

dit lization i bability distributi T. The interest in such a system is motivated by recent ex-
and its generalization to continuous probability diStributions, e imental studies on single biological molecul8ss]. We

is straightforward. _In stgtlsucal mechanlcg, the same([Ex. point out that such systems provide a unique type of non-
gives the entropy, in units dfg, for a canonical ensemble of ¢qyjlibrium problem in which the momentum distribution is
a molecular system at constant temperature. This is know 8§ rapid equilibrium due to collisions with the solvent mol-
Gibbs entropy. The probability of a molecular configuration,ecules. Hence the nonequilibrium problem is only for the
say {Xy}, is related to its free energy({x,}) according to  conformational, stochastic dynamics of the macromolecule.
Boltzmann’s lawP({x})<e "™/l wherekg is Boltz- A separation of the time scales for momentum and confor-
mann’s constant and is the temperature in K3]. It is mation (overdamped mechanics assumed, which leads to
generally accepted, however, that the entropy in informatiorthe Smoluchowski equation.
theory and that in statistical mechanics, though they share The Smoluchowski approach to nonequilibrium statistical
the same name, are not the same. mechanics of single macromolecules in an aqueous solution
This paper demonstrates a second connection between tifeparallel and complementary to the approach based on the
two fields: both are based on the theory of probability. TheréBoltzmann equation for gases and liquids. Both approaches
is another important concept in information theory called@'® based on Newtonian mechanics, but both invoke a sto-
relative entropyH[{pi/{p;}]. It is associated with prob- chast|q elementa priori in dealing with coll|§|pn$[10]. .
ability distributions{p} and{p}: 'I_'here is an extensive I_|terature_ on the nonequmbrlum statis-
tical mechanics, including studies on relative entropy, based
on Boltzmann’s framework9]. This work illustrates an ap-
) 2 proach based on the Smoluchowski’'s framewj@k which
’ is simpler, conceptually straightforward, and applicable to
biomolecular applications. We note that the rate of uncom-
The relative entropy has many important mathematical propPensated heat in R€f9] seems to correspond to the entropy
erties; for example, it is positive, and is equal to zero if andProduction rate in the Smoluchowski's framework. The pre-
only if p,=p} ; furthermore, it is a convex function g . cise and concrete relation between these two quantities re-

Until now, however, the relative entropy has not naturally M&ins to be establishgd 1].
found a physical interpretation in statistical mechanics, de-
spite its important role as a mathematical device in the sta-
bility analysis of master equatior{gt] and Fokker-Planck
equationg5]. In this paper, we demonstrate, using two spe- Let us consider a one-dimensional polymer chain wth

identical subunits. Each subunit is an elastic element with a
free energy function(potential of mean forge¢(x). Let
*Electronic address: gian@amath.washington.edu X1,X2, . .. Xy—1 b€ the junctions between successive sub-
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units. We assume that the ergl=0 is anchored and the eng is freely fluctuating. This model was motivated by mechanical
studies on giant muscle protein titid2]. According to Boltzmann'’s law, the joint probability for gt} is

_ d(X1—Xo) + P(Xog=Xg) + - + A(XN—Xn-1)
Peq({xk}) =Ztexg - ) 3
kgT

|

where This is in fact a mathematical result for a large deviation of
level 2[7]. We give only a heuristic proof below, and leave

7 * ¢(2) d N the rigorous treatment to the mathematical literature.
1 Jo exp — kT Let us denote

The partition function of the equilibrium state of such a sys- _ J'(”“)" (dx and p,= f(”“)‘s (X)dx

tem can be obtained analytically using Laplace transform Yn ns v Pn P '

[13,14). The theory of large deviation of level 1 serves as its

rigorous mathematical foundatigi]. Because all the subunits are independepis a multinomial

In a laboratory, usually onlyy is observabld15]. For  distribution:
this case, we obtain the marginal distribution of E8):

N!
F’eq(xN)=JO fo Peg({xiDdxy ... dxy 1. (4 POvivas V) = 0 TN (Nw)!
Xp?”lp?yz .. .p';'”m. (7

Combining the probability distribution in E¢4) with Bolt-

zmann's law, we obtain a free energy function for the entiréaccording to Boltzmann's law, the free energy difference
polymer under the condition that the end of the chain is ahetween configurationy,} and{p,} is

XN

P({vn})
F(Xn)=—KkgT InPgy(Xpn)- — =—
(%)= —kgT In Peg(xy) FL{val] = Fl{Pa}]=—kaTIn| 50
In a completely parallel fashion, one can obtain the free en- m
ergy functionF(x;,x;) from a marginal distribution of Eq. ~NksT >, v, |n(ﬂ)
(3). n=1 Pn
A different type of laboratory measurements is to obtain . «
the density for the subunit length. Optical spectroscopy is _,NkBTJ' »(x)In Q)dx (6—0).
sensitive to the length of subunits; hence it provides a mea- 0 p(x)

surement of the density function,
Therefore, the relative entropy in E) is the free en-
1 ergy difference between the distributién(x)} and its(equi-
v(X)=5 k; O(X— X+ X—1), () librium) expectation{p(x)}. The relative entropy is the free
energy associated with a fluctuating density at equilibrium

which is known as the empirical measure in the theory 01[16]'
large deviation of level 27].

Clearly, the functionv(x) fluctuates in an equilibrium  1Il. NONEQUILIBRIUM RELAXATION OF A POLYMER
state, sinceX,—X,_1) fluctuates. It has an expectation CHAIN
o $00/kgT Our second _e_xa_mple extends the concept of free energy
E[v(x)]=p(X)= —— . beyond an equilibrium state, and reveals its central role in
f o~ (/KT gy the transient, |sc_)thermal, relaxation processgs_to equilibria
0 [17]. The dynamic model for the polymer chain in an aque-

ous solution at constant temperatures a Smoluchowski

For largeN, the fluctuations ofy(x) aroundp(x) are so equation[6],
small that one seldom considers their existence. Neverthe-

less, there is a free energy associated with edgh, and we dIP(x,t) _ ksT 2 1
now show that M P+;V'[VU(X)P]’ ®
0 X . . . . _
F[v(x)]—F[p(x)]:NkBTf V(X)'ﬂ( ( ))dx. 6) vi/heren is a frictional coefficientx=(x1,X5, ... Xn), V
0 p(x) = (3l 9xq,dl 95, . .. ,dldxy), and
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U(X)= (X1 =Xg) + p(Xo—=X1) + - - - + P(XNy—Xn-1)- ©

It is easy to verify that Boltzmann’s distributioReq(x) in
Eq. (3) is the stationary solution to Ed8). In fact, the
steady-state solution of Eq8) defines a stationary, time-
reversible, stochastic process with equilibrium fluctuation
[18].

How is an arbitrary distributiorP(x) # P.4(X) changing
with time and approaching tB.(x)? We now show that a
free energy functional can be introduced, and it is in fact th
relative entropy. Let us definet function

\I’[P(x)]zf [U(X)P(x)+kgTP(x)In P(x)]dx

o

(10

P(x)
Peq(X)

=—kgTInZ+ kBTf P(x)ln(

The first term is the Helmholtz free energy of the entire
polymer chain in its equilibrium state, and the second ter
should be interpreted as the free energy difference betwe
the arbitrary distributiorP(x) and the equilibrium distribu-
tion Pg(X).

The mathematical properties of relative entropy immedi
ately lead to the following statement: The system reache
equilibrium if and only if the free energy functionéhe ¥
function) is minimized. Furthermore, iP(x,t) changes with
t in a transient process according to E8), then

xir[P(x,t)]:—f J(x,1)D(x,t)dx=0, (11)
where

kgT 1
J(x,t)=— —VP(x,t)— =VU(X)P(x,t)
n n

and

e

[S]
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D(x,t)=—kgTV InP(x,t) —VU(x)
are fluxes and forces, which are both zero at equilibrium

[19]. Furthermore J=P®,, and Eq.(11) is related to the
entropy production ratg5,18,19. Equation(11) immediately

Seads to a second statement: The dynami® ©f,t) follows

a path of decreasing free energy. The free energy functional
in Eq. (10) is a Lyapunov function5] for the stochastic
dynamics of the polymer. The relative entropy is the free
energy difference between an arbitrary distribution and the
equilibrium distribution. It is associated with the nonequilib-
rium deviation from the equilibrium state. However, it is
interesting to note that the dynamics does not follow the
steepest descent of the free energy functional. The interpre-
tation and significance of this observation are not clear to us
at present time. We also note that Etjl) corresponds to the

H theorem in Boltzmann’s framework.

It is of course not a coincidence that the relative entropy
appears as a free energy difference in both equilibrium and
nonequilibrium situations. Onsaggz0] pointed out that the
grce driving the nonequilibrium relaxations is in fact the
same force causing the equilibrium fluctuations to return to
its mean. Our result, therefore, firmly relates the force to a
free energy difference in terms of the relative entropy.
< In summary, we have shown that the relative entropy in
information theory has a natural physical meaning in equi-
librium and nonequilibrium statistical mechanics. It is in fact
the free energy difference associated with the equilibrium
fluctuations of a density function, a result known in the
theory of large deviations. In nonequilibrium systems, it is
the free energy difference between an arbitrary distribution
and the equilibrium distribution. Again the latter result is
known in the theory of Markov processes. What is interest-
ing in the present paper is the identification of the relative
entropy with Helmholtz's free energy for isothermal sys-
tems. Conversely, the mathematical theorems mentioned
above become an integral part of the statistical physics of
macromolecules.
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